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Change-Vector Analysis in Mukitemporal
Space: A Tool To Detect and Categorize
Land-Cover Change Processes Using High
Temporal-Resolution Satellite Data

Eric F. Lambin* and Alan H. Strahlerf

A nalysis of change vectors in the multitemporal space,

applied to multitemporal local area coverage imagery

obtained by the Advanced Very-High Resolutwn Radiom-
eter on NOAA-9 and NOAA- I 1 orbiting pla~orms, clearly
reveals the nature and magnitude of land-cover change

in a region of West Aftica. The change vector compares
the diference in the time-trajecto~ of a biophysical indi-
cator, such as the normalized diference vegetation index,

for two successive time periods, such as hydrological

years. In establishing the time-trajectoq, the indicator is

composite for each pixel in a registered multidate image
sequence. The change vector is simply the vector diference
between successive time-trajectories, each represented as
a vector in a multidimensional measurement space. The
length of the change vector indicates the magnitude of
the interannual change, while its direction indicates the

nature of the change. A principal components analysis of
change vectors for a Sudanian-Sahelian region in West
Africa shows fmr major classes of change magnitude and
four general contrasting types of change. Scene-specifi
changes, such as reservoir water level storage changes,

are also identifid, The technique is easily extended to
other biophysical parameters, such as su~ace tempera-

ture, and can incorporate noneuclidean distance meas-

ures. Change vector analysis is being developedfm appli-

cation to the land-cover change product to be produced
using NASA’s Moderate-Resolutwn hnuging Spectroradi-

ometer instrument, scheduled fm~ight in 1998 and 2000
on EOS-AM and -PM platforms.
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INTRODUCTION

Land-cover, and human or naturaJ alterations of land-
cover, play a major role in global-scale patterns of cli-
mate and biogeochemistry of the earth system. The land
surface has considerable control on the planet’s energy
balance, biogeochemicd cycles, and hydrologic cycle,
which in turn significantly influence the climate system.
Variations in vegetation cover and, hence, physical char-
acteristics of the land surface such as albedo, emissivity,
roughness, and plant transpiration also generate varia-

tions of weather and climate by altering the hydrological
cycle and land–atmosphere energy fluxes. Global assess-
ment of the changes in physical characteristics of land-

cover is therefore a fundamental input for models of
global climate and terrestrial hydrology. While some
of these changes in land-cover are caused by naturaJ
processes, such as long-term changes of the climate

due to astronomical causes, or shorter-term vegetation
successions and geomorphological processes, human ac-
tivity increasingly modifies surface cover through direct
actions, such as deforestation, farming activities, urbaniza-
tion, or indirectly through man-induced climatic change.
The importance of mapping, quantifying, and monitor-
ing the changes in physical characteristics of land-cover
have been widely recognized in the scientific commu-

nity as a key element in the study of global change (e.g.,
IGBP, 1990; Anonymous, 1992; Henderson-Sellers and
Pitman, 1992). This article, presents a change detection
method designed for high temporal resolution data, such
as those of NOAA’s Advanced Very High Resolution
Radiometer (AVHRR), in order to address the need for
global data on the nature and magnitude of processes
of land-cover change. This method should detect areas
of change and categorize the type of change processes

occurring. It is being developed in the context of the
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land-cover change product to be produced using NASAS
Moderate Resolution Imaging Spectroradiometer (MO-
DIS), an instrument to be flown on the EOS-AM and
PM platforms in 1998 and 2000.

CHANGE DETECTION METHOD

Classic digital change detection techniques using re-
motely sensed data are based on the comparison of

sequential data taken from the same area and on the
display of the changes and their locations, There are
two approaches to change detection (Malila, 1980; Col-
well and Weber, 1981): comparative analysis of inde-
pendently-produced classifications, and simultaneous
analysis of multitemporal data. The first approach has
significant limitations. The comparison of land-cover
classifications for different dates does not allow the
detection of subtle changes within a land-cover class.
Also, the change map product of two classifications
exhibits accuracies similar to the product of multiplying
the accuracies of each individual classification (Stow et
al., 1980).

The land-cover change detection approach discussed
in this article utilizes the second approach. Rather than

analyzing isolated dates from two separate time periods,
it is based on a comparison of the temporal development
curve, or time-trajectory, for successive years of indica-
tors derived from AVHRR data, such as vegetation indi-
ces, surface temperature, or spatial structure. other
researchers have shown that a high temporal frequency
of measurement, which is a characteristic of the AVHRR
sensor, allows the characterization of vegetation types
by analysis of the seasonal or phonological variations of
these spectral indicators (Thomas and Henderson-

Sellers, 1987; Townshend et al., 1991). It can therefore
be expected that the interannual comparison of tempo-
ral development curves will also be required to detect
most types of land-cover change processes.

When the time trajectory of one or several indica-
tors over a particular pixel departs from that expected
for that pixel, a process of land-cover change can be
detected. The expected time trajectory can be derived
from the past history of that pixel. In addition to allowing
an unambiguous detection of abrupt changes in land-
cover types, this multitemporal approach is more sensi-

tive to subtle changes in seasonality, primary productiv-
ity, vegetation phenology, and ecosystem dynamic than

the more classic approaches, for which only a few iso-
lated dates from different years or seasons are compared.
In that latter case, not only the rich seasonal information
of remotely sensed data is ignored, but also an obvi-
ous undersampling of the temporal series hinders the
change detection accuracy. This undersampling is par-
ticularly problematic when dealing with abrupt and
sometimes brief ecological events such as vegetation

stress, flooding, burning, or dry spells. In that case, the
few dates on which the interannual comparison is based
can give a poor representation of the real land-cover
types and lead to the detection of spurious or ambiguous
changes.

Singh (1989) reviews a variety of procedures and
applications of digital change detection using high spa-
tial resolution data. Other studies, based on coarser
scale AVHRR data, have used annual integrated or
isolated dates of vegetation index data (or original Chan-
nels 1 and 2) to document the interannual variations in
primary production in the Sahel (Tucker et al., 1986;
Hellden and Eklundh, 1988; Hellden, 1991; Tucker et
al., 1991) and to quantify large-scale tropical deforestat-
ion (Tucker et al., 1984; Nelson and Holben, 1986;
Woodwell, 1987; Malingreau et al., 1989). While the
procedures used in these studies are appropriate to

detect abrupt land-cover changes such as forest clearing,
biomass burning, or the impact of a severe drought, the
detection of more subtle forms of changes, such as those
associated with climate change or with slow rates of
land degradation, requires a more sophisticated ap-
proach. The quantitative evaluation of differences in
seasonal development curves of remotely sensed data
has not yet been systematically applied to detect changes
in land-cover. However, this criterion has been used
qualitatively to detect the damage caused by a drought
and a large-sclae fire on tropical forest in eastern Kali-
mantan (Malingreau et al., 1985) and the impact of

drought on rice growing areas and forests in Asia (Malin-
greau, 1986).

MULTITEMPORAL CHANGE VECTOR

Analysis of Temporal Series

The comparison on an annual basis of vegetation index

or surface temperature temporal development curves,
on a pixel-by-pixel basis, requires the analysis of time-
trajectory shapes every year, for all pixels. This should
take place after filtering the multitemporal data for noise
introduced by atmospheric effects, sensor calibration,
and variations in viewing geometry. Various attempts
have been made to develop mathematical expressions
that fit vegetation development curves, using logistic
or exponential expressions (Badhwar and Henderson,
1985), using a combination of those for different phases

of the radiometric evolution of a vegetative cover (Baret
and Guyot, 1986), or jointly using the results of the
theories of generalized shift and of projection pursuit
(Antonovski et al., 1991). Other studies have used a few
simple parameters to characterize the evolution in time
of vegetation indices: the onset of greenness, the peak of
greenness, the length of growing season, the integrated
vegetation index, the amplitude of the variation, etc.
(Odenweller and Johnson, 1984; Malingreau, 1989; Lloyd,
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1990; Loveland et al., 1991). Samson (1993) proposes a

skew index and a range index to characterize the shape
of the seasonal profile of vegetation indices. Tucker et al.
(1985) used the information from the first two principal
components of annual NDVI time series as measures of
mean annual NDVI value and seasonality to classify the
time-profiles of land-cover types on a continental scale
in Africa. For our objective of comparing successive
temporal profiles to detect subtle land-cover changes,
a method of analysis which captures the maximum detail
contained in the time-trajectory of the indicator is
needed.

The seasonal dynamic of a remotely sensed indicator

can be represented by a point in a multidimensional
space, with the number of dimensions of this space
corresponding to the number of observations. These
observations will either correspond to the maximum
values of the indicator for prespecified compositing peri-
ods, or the results of a sampling through time of a
continuous function that describes the shape of the
time-trajectory of the indicator. If we assume monthly-
cornposited data or a monthly rate of sampling, 12
successive images will be available. The value taken by
the indicator under consideration can be represented,
for each pixel, by a point in the 12-dimensional temporal
space defined by the vector:

11

I(t,)
I(t,)

p(i,y) = . . . ,
. . .

I(tn)

where p(i,y) is the multitemporal vector for pixel i and
the year y, and IS are the values of the indicator under
consideration for pixel i at the time periods t] to t.,n

being the number of time dimensions. The magnitude
of this vector, Ip 1, measures the accumulated value of
the indicator through the year. The direction of this
vector, measured by the direction angles of p, is a
synthetic quantifier of the seasonal pattern of the indica-
tor, that is, the shape of the curve.

Figure 1 presents a simple example. This figure com-
pares the vegetation index vectors for 1 year, for pixels
corresponding to idealized desert and savanna classes,
assuming only two periods of observation a year —winter
and summer. [The shape of these curves generally follow
Tucker et al. (1985) and Townshend et al. (1987).] The
magnitude of the vectors, which is proportional to the
absolute values of the axis coordinates, represents the
cumulative vegetation index for that year. This annual
integrated vegetation index has been related to the total

dry-matter accumulation (Tucker et al., 1983), the net
primary productivity (Sellers, 1985; Tucker and Sellers,

1986; Goward et al., 1985; Box et al., 1989), and actual
evapotranspiration (Box et al., 1989; Cihlar et al., 1991)
of the land cover. The direction of the vectors, which
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Figure 1, Examples of multitemporal vectors for two simu-
lated land-cover types.

depends on the relative values of the axis coordinates,
quantifies the seasonal variations of the vegetation index.
These variations can be interpreted in terms of vegeta-

tion phenology (Tucker et al., 1985; Justice et al., 1985;
Goward et al., 1985), length of growing season (Justice
et al., 1986), or, at a coarser spatial scale, biome season-
ality and dynamics (Malingreau et al., 1985).

Change Vector

Every year, the coordinates of the position of any pixel
in the multidimensional temporal space can be ob-

served. Any change in accumulated value and I or in
seasonal dynamic of the indicator between successive

years will result in a displacement of the pixel’s point
in the multidimensional space. This difference in posi-
tion can be described by a change vector:

c(i) = p(i,y) – p(i,z),

where c(i) is the change vector for pixel i between the
years y and z. Change vector analysis has been applied
earlier in the muhispectral space (Malila, 1980; Colwell
and Weber, 1981; Virag and Colwell, 1987). In this
article, we apply the same concept to the multitemporal
space —that is, the multispectral observation vectors
are replaced by time-series observation vectors of an
indicator variable measured for different years.

The magnitude of the change vector, Ic 1,calculated

as the Euclidean distance between the two positions,
measures the intensity of the change in land cover.
The direction of the change vector, measured by the
direction angles of c, indicates the nature of the land-
cover change process. Figure 2 illustrates this point.
This figure presents simplistic simulations of two land-
cover change processes measured by a vegetation index,
assuming two observation periods a year. In the first

example, an idealized process of desertification, the
degradation of the vegetation cover from a wooded
savanna to a steppe leads to a decrease in the cumulative
value of the vegetation index, the phenology of the

two covers remaining unaltered. The second example
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Figure .2. Examples of change vectors for two simulated

land-cover change processes.

represents simplistically the impact of seasonal floods
in a delta region. During the first part of the year, the
vegetation index is depressed by the standing water and
high soil moisture, which absorb near infrared radiation.

During the second season, an active vegetation regrowth
is stimulated due to the new silt deposited and a greater
water availability, which leads to a higher than usual
increase in vegetation index value. This figure illustrates
that the magnitude of the change vector increases with
the intensity of the land-cover change. Moreover, for
these two examples, the direction of the change vector
varies with the type of change process. This allows a
categorization of change processes according not only
to their impact on the annualized integrated vegetation
index value but also to their effect on the seasonality of
the indicator.

In general, the change vector will be oriented along

an axis going through the origin when the change pro-
cesses do not alter the seasonal pattern of the indicator,
that is, if only the cumulative value is changed. (Since
this direction corresponds to a diagonal connecting the
origin with the opposite corner of the parallelepipeds
defined by the vector p, we refer to this direction as along
the diagonal.) In contrast, when the change processes
modify the seasomdity of the indicator, the direction of
the change vector will be oriented along an off-diagonal

direction. The multidimensional temporal space can
therefore be segmented into a set of basic directions
corresponding to certain categories of land-cover change
processes. This “compass-card” of temporal changes can
serve as a basis for a categorization of change processes,
such as permanent clearing of vegetation, changes from
seasonal to perennial crops, soil degradation, irrigation
of drylands, etc. This approach has several advantages:
It provides a quantifier of the intensity of change, it
allows a characterization of the nature of the change
process, it is based on the history of each particular
pixel, and it involves simple mathematical methods.

High Interannual Variability of Ecosystem Conditions

Some ecosystems, such as those of semiarid regions,
are characterized by a large interannual variability in
climatic conditions, leading to large interannual varia-
tions in vegetation productivity. It might therefore be
difficult to distinguish the trends of land-cover changes
caused by human disturbances or by long-term changes
in climatic conditions from the noise created by aperi-
odic and recurring rainfall shortages. The multitemporal
change vector method can be adapted to allow this
less-significant interannual variability of vegetation con-
dition to be taken into account. If long-term data on
the spectral behavior of every pixel have been collected
and archived, the current position of one pixel in the
multidimensional space can be compared with the set
of positions of that pixel during the previous years of
observation. If there is a large number of these past
records, the Mahalanobis distance can be used in place
of the Euclidean distance.

In the formulation of the Mahalanobis distance, the

distance between a point, defined by the vector pi, and
the mean of a set of other points is modulated with the
covariance matrix, which confers a degree of directional
sensitivity to the measure:

d(p,,m)’ = (pi - m)’Z - ‘(p, - m),

where m and X are the mean vector and covariance
matrix of the archived data. Therefore, the amplitude

of a change in a certain direction is weighted by the
probability that the natural interannual variability of the
climate leads to a change in that direction, this probabil-
ity being inferred from the covariance matrix of past

observations. In semiarid regions for instance, the vari-
ability of vegetation conditions is restricted to the rainy
season, only 3–4 months a year. Thus, in normal condi-
tions, the covariance will be high along these temporal
dimensions and very low along the other dimensions
corresponding to the dry season. Since this study exam-
ines only two years of multitemporal data, a covariance
matrix is not available. However, the use of Mahalanobis
distance could be easily explored as longer datasets are
accumulated.
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TEST OF THE METHOD

The change detection method described in the previous
section were tested with AVHRR data over an area in
West Africa. However, the AVHRR GAC product suffers
from spatial sampling problems (Justice et al., 1989;
Belward and Lambin, 1990), which decrease the accu-
racy of multitemporal comparisons. The global vegeta-
tion index data set (GVI), produced by sampling and
compositing of the GAC data, have further degraded
the original observations (Goward et al., 1991). There-
fore, 1.1 km resolution AVHRR LAC/ HRPT data were
selected. Our tests have been conducted using the nor-
malized difference vegetation index (NDVI), the most
widely used vegetation index in coarse scale studies.

Study Area

A subscene of 512x 512 pixels of LAC AVHRR data
covering a region in West Africa across Mali, Senegal,
and Guinea was selected for our test (Fig. 3) (Gr6goire,
1990). This area includes several watersheds from the
Niger, Senegal, and Gambia rivers systems as well as
the northern edge of the Fouta Djallon, southwest of
the scene. Precipitation varies from about 1800 mm
in the Fouta Djallon to 750 mm in the north of the
scene. The rainy season normally occurs from June to
early October, but is shorter and starts later in the
north of the scene. The area belongs to the Sudanian

phytogeographic zone and, in the northern part, to the
Sahelian domain. In the south, the vegetation type is
open forest dominated by deciduous and semideciduous
species with an herbaceous stratum, ranging to tree and
shrub savannas. To the north, the herbaceous stratum
dominates the landscape. The combined effect of vegeta-

tion type and climatological zoning leads to north–
south variations in vegetation phenology. Vegetation
senescence occurs earlier and more rapidly on the
northern grass savanna than on the southern woody

Figure 3. Location of the study area.
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savanna and open forest. The patterns of vegetation
growth vary similarly with vegetation types and the
timing of the rains (ORSTOM, 1991). These geographic
variations in vegetation response have been analyzed

by Gr6goire (1990) using AVHRR data in the thermal
domain (Channel 3) and in the reflective domain (NDVI)
for a few selected dates.

There are three main processes of interannual land-

cover change acting in the region. First, the timing of
vegetation activity varies from one year to another as a
result of variations in rainfall distribution. These changes
are nonpermanent and are driven by the interannual
climatic variability. Second, changes in vegetation types
occur as a result of human activity or longer-term cli-
matic changes. These changes are not well documented
for the region and probably occur at a slow rate. Third,
biomass burning is an important process of land-cover
change and ecological degradation that fiects the area.
Bush fire activity is maximum from the end of October
to early January.

Meteorological Data

Land-cover changes were analyzed between two hydro-
logical years (from July to June 1987/88 and 1988/ 89).
Monthly meteorological and hydrological data for these

two years were available for three different stations
along the Faleme watershed, which occupies a large
part of the AVHRR subscene. The rainfall and hydrologi-
cal data reveal the following interannual differences (see
Table 1 and Fig. 4) (ORSTOM, 1991):

1. The annual precipitation values for the two years

2.

were approximately equal for the three stations
but, for both years, lower than the long-term aver-
age,
The second hydrological year (1988 / 89) was char-

3.

acterized by an earlier and more intense start of
the rainy season, with a maximum in precipitation
occurring in July compared to August for the first

year. These different rainfall distributions are ex-
pected to lead to differences in the timing of vege-
tation growth.
During the second hydrological year (1988 / 89),
the month of October, at the end of the rainy sea-
son, was drier than the same period for the first

year. This also contributed to an earlier senes-
cence of vegetation at the begin of the second

year’s dry season as compared to the first year.

It should also be noted that a high spatial variability in
rainfall distribution is typical of Sahelo-Sudanian regions
(Flitcroft et al., 1989). The network of meteorological

stations is too sparse to grasp accurately the spatial
variations in rainfall distribution throughout the area.

Remotely Sensed Data

The multiyear AVHRR LAC multitemporal data used
in this study were assembled and preprocessed by the



236 Lambin and Strahler

Table 1. Monthly and Annual Precipitation (mm) at Three Stations in the Faleme Watershed

Precipitation (mm)

Kidira (North) Gowbassy (Center) Fadougou (South)

1987/88 1988 /89 1987/88 1988 /89 1987/88 1988 /89

May 33,6 34.0 52.9 3’7.3 79.2 26.9

June 90.7 101.9 101.8 149.2 126.3 178.9

July 176.5 239.5 210.3 259.3 228.1 284.1

August 243.8 192.6 266.1 196,6 298.9 241.6

September 1.59.6 204.9 178.4 219.2 185.2 217.6

October 85.3 13,3 69.1 9.4 82.1 14.6

November 0.3 11.3 0,6 19.4 0.9 29.4

December 0.0 0.0 0.0 0.0 0.0 0.0

January 0.0 0.0 0.0 0.0 0.0 0.0

February 0.0 1.3 0,0 2,2 0.0 3.4

March 0.0 2.8 0.0 4.7 0,0 7.2

April 11.4 2.0 15.4 3.4 15.0 5.1

Annual 801.2 803.6 894.6 900.6 1015.7 1008.9

Monitoring Tropical Vegetation group, at the Joint Re-
search Center (Ispra, Italy). Data were acquired by the
NOAA-9 and, after November 1988, NOAA-1 1 satel-
lites. NOAA-1 1 has an earlier equatorial crossing time

than NOAA-9. The resulting change in solar zenith
angles, as well as differences in prelaunch calibration
characteristics, were compensated for when calculating
apparent at-satellite reflectance, by using corrections
for the sun-zenith angle, the sun-earth distance and the
spectral response function of the sensor. These calcula-
tions were performed using the NEWTAN software
described by Vogt (1990). The calculated reflectance is
a standardized value which allows a comparative analysis
of values measured by different radiometers. It assumes
a Lambertian ground reflectance and is not corrected
for atmospheric influences.

The data included 100 relatively cloud- and smoke-
free, near-nadir view images that were selected during

the July 1987–June 1989 period. The data were geomet-

Figure 4. Monthly rainfall data at three stations in the
Faleme watershed for two hydrological years.

1- Kidira

Gourbassy

Fadou~ou K

<,,,, +_J
MJJASON DJFMAMJJASOND JFMA

MontIr (1987 to 1989)

rically corrected to a master image using the ground
control points and accurately coregistered manually.
Accurate registration is a key factor for successful detec-
tion of nonspurious changes in land-cover (Townshend

et al., 1992). The normalized difference vegetation index
was calculated from the AVHRR Channels 1 and 2. The
atmospheric contamination and directional reflectance
effects were reduced from the annual NDVI data series
using the maximum value composite technique (Holben,
1986), with a l-month compositing period. This tech-
nique failed to remove all clouds, especially during the
rainy season. The August composites for the two years
were still largely contaminated by cloud formations and
were removed from most of the subsequent analysis.
The October composite for the first year had a few
remaining clouds in the southwest portion of the scene.
It was retained as a way to test the ability of the change

vector method to detect cloud contamination in image
data and to isolate this purely atmospheric change pro-
cess from changes in land cover.

Analytical Procedures

The analysis of the data was performed in three steps.
First, the magnitude of the change vector was calculated
for a few pixels of known identity. The objective of this
preliminary analysis was to compare the quantitative
results of the vector analysis with the visuaJ assessment

of the interannual changes in temporal development
curves. Second, the analysis was extended to the whole
image. The magnitude of the interannual change vector
was calculated for all pixels. An image of the It(i) I values
was created and interpreted.

Third, the intrinsic dimensionality of the change
vector data was assessed using principal components
analysis (PCA) on the set of monthly difference images,
which are the components of the change vector image.
Given the n-dimensional change vector c,
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[

I(tI,y) – I(tI,z)”
I(MJ – I(t@

c(i)= . . .

1I(%y) – I(h,~)_

A linear transformation A of the original coordinates is
defined to represent the change data with a vector d in

a new coordinate system,

d= Ac>

such that the change data can be represented without
correlation in the d space or, in other words, such that
the covariance matrix of the data in the d space (~cI) is
diagonal. A is the transposed matrix of eigenvectors of
the covariance matrix of the data in the c space (X,). ~d
is the diagonal matrix of eigenvalues of Z,, arranged in
order of descending statistical variance accounted for
by the principal components (Richards, 1986). In this
application of PCA, the original variables are images of
the differences between the monthly composite NDVI
images from two different years. In a different, but
related, application, Townshend et al. (1985) used PCA
to explore the underlying dimensionality of multitempo-
ral sets of vegetation index data over a time period
shorter than a year. They demonstrated that two domi-
nant directions can be recognized in continental NDVI

series: the annualized integrated NDVI and the season-
ality of the NDVI. Our analysis is different, in that its
goal is to identify the set of main directions of the
change vectors in the multidimensional temporal space.
These directions correspond to the land-cover change
processes affecting the area between the two years.

RESULTS

Preliminary Analysis of Representative Pixels

The NDVI temporal profiles of three pixels, for the two
successive hydrological years, is shown in Figure 5.
These examples represent different patterns of interan-
nual change. The multitemporal data were composite
using a 3-week period. In Figure 5, the NDVI observa-
tions are plotted, for each compositing period, at the
date of the image for which the maximum NDVI is
observed for that pixel. The time-trajectories were pro-
duced by linear interpolation of NDVI values between
nearest dates. The resulting curves were sampled with

a time frequency of 2 weeks to produce 24-dimensional
temporaJ vectors. Table 2 gives, for these three pixels,
the magnitude of each change vector and the standard
deviation of the components of the change vector, calcu-
lated from the digital numbers (O-255). The standard

deviation provides a first, rough indication of the direc-
tion of the change vector: A large dispersion between
the vector components indicates an off-diagonal direc-
tion while a low standard deviation indicates a direction
near the diagonal.
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Figure 5, NDVI temporal profiles of three pixels for the
two hydrological years: a) savanna (south); b) savanna
(southwest); c) herbaceous cover (north).

1. In the first case, a savanna in the south of the

scene (Fig. 5a), few changes between the two
years can be observed. The only noticeable in-
terannual variations are a later maximum NDVI
for the second year and an abrupt decrease of the
NDVI at the end of the second rainy season as a
result of a fire. The burned surface resulting from

this fire could be seen unambiguously on the im-
age from that date, For that pixel, the magnitude
of the change vector is low (Table 2). Note that
the timing of the early-season shift in the peak val-
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Table 2. Magnitude and Direction of the NDVI Change Vector for Three Pixels

Standard Deviatwn
Magnitude of Change in

Cover Class
of Change Vector

Change in j NDVI Change Vectoti Temporal Projile Components”b

Savanna (south) Small 39,01 Fire at the end of the rainy season 7.78
Savanna (center) Lower NDVI curve the first year 84.08 No 12.62
Savanna (north) Variations in NDVI profile 76.08 Short drought (rainy season) and

fire (dry season) 15.71
—.. . . . .

“ Calculated from the digital numbers.
~ Indicates the direction of change vector,

ues may not be accurate since an observation is
missing at the begin of the second hydrological

year. However, the abrupt decrease in NDVI after
the peak of the second year is real.

2. In the second case, a savanna in the southwest of
the scene (Fig. 5b), the whole NDVI curve for
the first year is lower compared to the second
year, suggesting either a lower annual rainfall or
the degradation of the vegetation cover at that lo-
cation. The shapes of the two curves, and there-
fore the seasonal pattern of vegetation growth, are
very similar, with the exception of a small time
lag. For this example, the magnitude of the

change vector is large compared to the two
others.

3. In the third example, an herbaceous cover in the
north of the scene (Fig. 5c), the NDVI profile for
the first year is characterized by two sharp but
short-term declines in NDVI. The first one is
probably related to a rainfall shortage during the
rainy season, a frequent event in that Sahelian lo-
cation. The second one occurs as a result of a late
fire (mid-March), which can be seen on the im-
age. These variations not only lead to a change in
the cumulative value of the NDVI as indicated by

the high value of the magnitude of the change vec-
tor, but also result in a change in the phenology
of the cover, as measured by a higher standard de-
viation of the vector components.

These empirical observations illustrate the approach
and the nature of the multitemporal change vector mea-
surement.

Processing of the whole Image

For every pixel, the temporal vectors for the two hydro-
logical years, calculated from the monthly composites

but excluding the August period, were subtracted from
each other, yielding a change vector. The magnitude of
this vector was calculated and displayed on an image
(Fig. 6). This image provides a cartographic representa-
tion of the intensity of land-cover changes between the
two years being analyzed. Different threshold values
can be defined to separate the areas of significant change
from the areas with little or no change, as well as to

identify different categories of change based on the

magnitude of the interannual variations in NDVI values.
In Figure 6, four classes of change intensities can be
identified.

Class I: very bright pixels corresponding to interannual
variations in the water level of the Manantali lake,
associated with a dam, in the center of the scene,
and to some clouds that remained after composit-
ing in the south-west comer of the scene.

Class !2 bright patches at the southern edge of the
image which roughly correspond to the ecocli-
matic zone characterized by a high annual rainfall.

Class 3: grey tones which occupy a large portion of
the image; their interpretation is more difficult
since they cover a large portion of the image.

Class 4: darker tones, which correspond to the no-
change class.

Note that these four categories of change are distributed
in a spatially structured and nonrandom fashion, dis-

playing a high degree of spatial autocorrelation. This
suggests that they correspond to real change processes

Figs-me 6. Image of the magnitude of the change vector.
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Table3. Eigenvalues and Percentage of Total Variance
Explained by Principal Component Images

Cumulation
Component Eigenvalue % Variance Y. Variance

1

2

3

4

5

6

7

8

9

10

11

1385.16

650.98

479.65

447.48

336.92

303.33
253.10

224.65

166.64

134.08

87,36

30.99

14,57

10.73

10.01

7.54

6.79

5.66

5.03

3.73

3.00

1.95

30.99

45.56

56.29

66.30

73.84

80.63

86.29

91.32

95.05

98.05

100.00

rather than to noise or computation artifacts, which
would be spatially unstructured. In order to interpret

the meaning of these categories of change intensities,
we turn now our attention to the directions of the
change vectors in the multitemporal space.

Intrinsic Dimensionality of the Change Vector Image

The PCA calculated on the monthly difference images
(excluding the August period) produced unusual results
in the sense that 8 out of the 11 principal component
images are required to account for more than 90 YOof

the total variance (Table 3). In the work of Townshend
et al. (1985) on single-year NDVI time series, only the
first two principal component images (out of 8 for Africa
and 10 for North America) were required to account
for more than 90% of the total variance. Our result

underscores the difference in information content be-
tween change vectors and time-trajectories. Clearly, in-
terannual change processes are more diverse in their
nature, intensity, timing, and duration than seasonal

changes.

The principal component images were compared

to the monthly difference images with the aid of the
factor loadings matrix (Table 4). The analysis of these
images and their correlation reveal that each principal
component image represents one specific type of change

TabZe 4. Factor Loadings Matrix of the PCA

process. Four of these processes, represented by specific

components, can be clearly interpreted:

Differences in vegetation growth at the start of the

growing season: The first principal component
(PC1) is correlated to the May and June composit-
ing periods (Table 4) and represents changes in
vegetation growth at the start of the growing sea-

son. As the AVHRR data set starts in July, it
actually corresponds to the beginning of the next
rainy season, at the end of the hydrological year.

Differences in vegetation senescence of tree and shrub

savannas: PC2 is correlated to the dry season
months: December, January, and, to a lesser ex-

tent, February and March compositing periods.
It represents differences in the rate of vegetation

senescence for the savannas in the south and
center of the scene.

Differences in vegetation senescence of grasslands:

PC3 is correlated to the November compositing

period and represents differences in the rate of
senescence of the herbaceous cover that domi-
nates the northern part of the scene.

Differences in haze and cloud contamination: PC4 is
correlated to the July compositing period and
PC8 to the October composite, both periods con-

taminated by haze and clouds respectively.

Also, PC7 displays clearly the Selingue lake behind a
dam at the southeast corner of the scene, for which
year long variations in water level lead to a strong
change signal. The meaning of the other components is
more difficult to interpret without detailed biophysical
data on the area, but they possibly represent change
processes of minor spatial extent.

Examples of Interpretation

Even though our goal is essentially methodological, we
provide in this section an interpretation of the change

patterns revealed by two of the principal component
images (PC1 and PC8) in order to evaluate the validity
and accuracy of the change vector analysis. This inter-
pretation assumes the existence of strong relationships

JUl Sep Ott Nov Dec Jan Feb Mar Apr May ]un

1 -0.398 – 0.225 0,063 0.306 0.135 0.601 0.336 0.178 0.135 0.837 0.889
2 – 0.202 0.079 -0.085 0.309 0.644 0.540 0.520 0.494 0.244 -0.306 -0.302
3 -0.365 – 0.406 – 0.279 – 0.773 -0.068 0.232 0.178 – 0.094 -0.035 0,093 -0.171
4 0.763 – 0,037 -0.076 -0,314 0.317 0.065 0.171 0,226 0.309 0,232 0.002
5 0.033 -0.166 -0.526 0.156 0,447 -0,032 -0.219 -0,573 -0.562 0,122 – 0.058
6 -0.288 0.390 -0.018 -0,142 0.393 -0.438 0.017 0,177 0.318 0.176 -0.003
7 -0.014 -0.594 – 0.329 0,234 -0.132 -0,262 0.221 0.277 0.275 0.078 -0.089
8 -0.023 -0,460 0.691 -0.029 0.266 – 0.097 -0.011 –0,110 -0.111 -0.029 – 0.002
9 -0.025 –0.172 -0.145 -0,056 0.118 0,059 -0.587 0.181 0,302 -0.162 0,137

10 0.025 -0,033 -0.141 – 0.099 0.070 -0.115 0,319 0.021 –0,189 -0.248 0.244
11 0.000 -0,003 – 0.007 0.023 0.003 0.016 0.109 -0.428 0.441 -0.050 0,022
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between the NDVI, vegetation phenology, and rainfall
distribution, which have been very well demonstrated
for the Sahel by several studies (Justice et al., 1986;
Hielkema et al., 1986; Malo and Nicholson, 1990; Nich-
olson et al., 1990; Justice et al., 1991).

1. The first principal component represents the
change processes taking place during the onset of
the rainy season. During that period, variations in
timings and rates of vegetation growth can be ob-
served. At the end of the first hydrological year
(May and June 1988 189), the rains were abundant
early in the season, leading to an early start of the
growing season. On the PC1 image (Fig. 7c), a

(a)

large east–west strip of high PC scores dominates
the middle of the image. Since PC1 is positively

correlated with the difference images for the
months of May and June (0.84 and 0.89, respec-
tively), and since the differences have been calcu-
lated by subtracting the second year NDVI im-

ages from the first year images, this indicates
higher NDVI values for the first year compared to
the second year in that part of the image. This in-
terpretation is supported by the visual analysis of
the June composite for the two years (Fig. 7a and
7b). Much lower PC1 scores can be observed in
the southern part of the PC1 image, This indi-
cates higher NDVI values for the second year, as
can be verified in Figures 7a and 7b. For the sec-
ond year, the wave of vegetation greening, moving
northward, reached the southern edge of the

scene 1 month later than for the first year. As a
result, in that portion of the image, the NDVI
reached its peak in June of the second year. In
the first year, the NDVI was already declining in
June, with the peak in vegetation activity oc-
curring in May. The difference image is therefore
negative and appears dark on that portion of the
PC1 image, which is positively correlated with

the July difference image.
2. The eighth principal component identifies cloud

contamination of composite data. It is positively
correlated with the october difference image
(0.69), In the first year, the October composite

Figure 7, Interpretation of the first principal component:
a) NDVI composite image for June, first hydrological year;
b) NDVI composite image for June, second hydrological
year; c) image of the first principal component.

%. 4.

(b) (c)
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(c)

&

(b)

was contaminated by a string of residual clouds in
the southwest part of the scene, while for the sec-
ond year it was cloud-free (Fig. 8a and 8b). The

difference image for october clearly identified
this interannual change, which also appears with
very high values in the change intensity map (Fig.
6). PC8 isolates the atmospheric contamination of
the first year as a separate type of change (Fig.
8c). The clouds appear in black on the composite
image since they have a lower NDVI value than
the cover type seen in the second year on the
same location, which leads to a negative interan-
nual difference.

Figure 8. Interpretation of the eighth principal component:

a) NDVI composite image for October, first hydrological
year; b) NDVI composite image for October, second hydro-
logical year; c) image of the eighth principal component.

DISCUSSION

Specific Findings

1 The implicit criteria of categorization of change
processes using the multitemporal change vector
technique are the timing and duration of the
changes. Each principal component accounts for
the variance along one specific direction in multi-
dimensional temporal space, defined by a single

original axis for short-term changes or by several
axis for changes having effects spread over several
months.

2. The percentage of the total variance of the

change intensity image which is explained by
each change process —the rank of each principal
component image —depends more on the spatial
extent of the change than on the intensity of its
effect on the vegetation index. Therefore, the rank-
ing of the principal components is irrelevant to in-

terpret the importance and biophysical meaning
of change processes, but is useful to assess the
spatial pattern of the change.

3. A primary achievement of change vector analysis
is that it is able to isolate the spurious changes

caused by residual atmospheric contamination,
such as clouds (PCs 4 and 8), from the actual
changes in land cover. This decreases reliance on
the efficiency of cloud-screening and compositing
techniques.

4. Land-cover change caused by biomass burning is
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not detected in the analysis of the whole image

since the l-month compositing period masks most
of the effects of fires on vegetation. Burned areas
have a low NDVI and, therefore, are not selected
by the compositing criteria. However, the impact
of fires was detected in the analysis of isolated pix-
els since the compositing period for these profiles
was 3 weeks, and the temporal development
curves have been sampled with a 2-week fre-
quency. This shows that the change vector analy-
sis is sensitive to the length of the compositing pe-
riod. Shorter compositing periods will detect
shorter-term land-cover changes, such as those re-
lated to biomass burning, but will also increase
the residual cloud contamination of the data. How-
ever, since change vector analysis is able to iso-
late atmospheric changes, this latter effect might
not be a major problem.

Future work

1. There is some analogy between our research and
the well-known Tasseled Cap transformation
(Kauth and Thomas, 1976; Crist and Cicone,
1984). This transformation identifies inherent
structures present in data from Landsat sensors,
which are the expression of physical characteris-
tics of scene classes. once established, the same
transformation coefficients are used for all environ-
ments. It would also be desirable to find inherent

and stable directions of basic change vectors.
With further study across a wider range of ecosys-
tems, it may be possible to define transformations,
similar to those of the Tasseled Cap, that quantify
specific change processes as they are manifest
within the particular rhythm of a particular re-
gion. For instance, basic change vectors can be de-
fined: (i) for the dry season, to categorize the
transformation of perennial or evergreen vegeta-
tion into annual or seasonal vegetation, (ii) for the
period of vegetation growth, to identify interan-
nual variations in the date of onset of the rainy

season, (iii) for the period of crop harvest, to iden-
tify areas of agricultural expansion, (iv) for the
burning season, the flooding season, etc. Since the
change categorization is largely based on the tim-
ing of the change processes within the natural sea-
sonal cycle of the ecosystem, the labeling of spe-
cific directions in multitemporal space in terms of
change processes will depend on the natural calen-
dar of the ecosystem. For instance, the southern
and northern hemisphere will yield opposite inter-
pretations of the directions in the multitemporal
space. This factor can, however, be easily con-
trolled by measuring changes on the basis of com-
mon seasonal or hydrological cycles rather than

on the basis of an absolute calendar. Such an ap-
proach should permit replacement of the empiri-

cal and scene-dependent nature of PCA by a
more universal and ecologically based transforma-
tion of multiyear, multitemporal datasets. The
definition of fixed transformation coefficients will
require the analysis of data sets over a variety of
ecosystems.

2. In this article, we have only processed vegetation
index data. However, in order to increase the ac-
curacy of the change detection technique, several
independent indicators of land cover should be

combined in this analysis. In addition to the vege-
tation index, or any other linear or nonlinear com-
bination of spectral bands in the reflective do-
main, data in the emissive domain, such as

surface temperature, could be integrated. Spatial
and angular information can also be considered.
For example, patterns of surface spatial structure
within various land covers have a rich information
content drawn from the natural processes and hu-
man activities acting on the land surface. Interan-
nual changes in the seasonal dynamic of the spa-
tial structure of images could therefore be
interpreted in terms of land-cover change pro-

cesses (Lambin and Strahler, 1994).

3, The methodology we present here is being devel-
oped as a candidate for the land-cover change
product to be provided by NASA’s Earth Observ-
ing System using the Moderate Resolution Im-
aging Spectroradiometer (MODIS) (Salomonson et
al., 1989). This instrument is similar to the
AVHRR sensor in that it provides frequent tempo-
ral coverage of the earth, acquiring images on a
2-daY repeat. Unlike AVHRR, the instrument im-

ages in 36 spectral bands from 0.4 pm to 14 pm
selected for studies of atmosphere, ocean, and
land. The land bands sample regions of the spec-
trum that are largely similar to those sampled by
the Landsat Thematic Mapper, except that band-
widths are much narrower. Spatial resolution of

these bands is 500 m, while resolution of two
bands in the red and near-infrared is 250 m. The
MODIS instrument will be much better calibrated
than AVHRR, and because atmospheric data are
acquired simultaneously with land data, it should
be possible to routinely correct MODIS land ob-
servations for atmospheric effects. MODIS is now
scheduled for flight on both EOS-AM and -PM
platforms, due for launch in 1998 and 2000, re-
spectively. The land-cover change product is a
companion to the land cover product. Both are
presently planned to be issued at 3-month inter-

vals and at l-km spatial resolution. The two prod-
ucts are being developed by the MODIS Land
Team. Running et al. (1993) provide a further de-
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scription of these and other products planned by
the Land Team for MODIS.

CONCLUSION

The change vector analysis, combined with a principal

components analysis on the change vectors, has proven
to be effective in detecting and categorizing interannual
changes between time-trajectories of NDVI data over
an area in West Africa. The interpretation of the results
of the PCA is scene-dependent and cannot be easily

generalized. However, change vector analysis per se
allows a more universal interpretation of change pro-
cesses and can lead to the definition of inherent and
stable directions of change. This would require the
testing of this technique over a wider variety of ecosys-
tems. The major bottleneck for such a test is the avail-
abilityy of AVHRR LAC / HRPT interannual data series.
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activities of the Monitoring Tropical Vegetatwn Group. We also
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